Available online at www.sciencedirect.com

Irrizrnzitionzl
sclENCE@DIRECT" Jeurnal oF
& .,ﬁ TrhErnzl
— > _ _ Seclances
ELSEVIER International Journal of Thermal Sciences 44 (2005) 787798

www.elsevier.com/locatelijts

Heat transfer in a laminar flow in a helical pipe filled
with a fluid saturated porous medium

Liping Cheng, Andrey V. Kuznetsov

Department of Mechanical and Aerospace Engineering, North Carolina Sate University, Campus Box 7910, Raleigh, NC 27695-7910, USA
Received 4 August 2004; received in revised form 10 December 2004; accepted 14 December 2004
Available online 7 April 2005

Abstract

This paper presents the first attempt to investigate numerically heat transfer in a helical pipe filled with a fluid saturated porous medium;
the analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the
Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects
of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow,
temperature distribution, and the Nusselt number are investigated.

0 2005 Elsevier SAS. All rights reserved.
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1. Introduction ies have been conducted to examine the effects of torsion
and curvature on the Newtonian fluid flow in helical pipes
The investigation of flows in porous media is motivated utilizing the Dean numbeDn = ¢'/?Re, and the Germano
by various engineering applications, such as migration of numberGn = (¢1)Re, to characterize the magnitude and the
moisture in fibrous insulation, grain storage, transport in shape of the secondary flow and the effects of the curvature
contaminated soils, underground disposal of nuclear wastesand torsion on helical pipe flow [2-9]. Sandeep et al. [10] ex-
transport in drying processes, heat exchanges, etc. Nield andended the analysis of a helical pipe flow to non-Newtonian
Bejan [1] summarized the state-of-art on this topic. Another fluids; the numerical research was performed in a Cartesian
quickly developing research field related to porous media is coordinate system. Cheng and Kuznetsov [11] used the or-
concerned with biomedical applications. In a clotted artery, thogonal helical coordinate system to study the effects of
the lesions or “plaques” within the artery wall consist of lo-  torsion and curvature on non-Newtonian fluid flow in helical
calized deposits of fat compounds (lipids) surrounded by pipes and compared the flow dynamics between Newtonian
cells recruited from the blood stream and scar tissue; this gnd non-Newtonian fluids.
acts as a porous medium that may diminish or completely  Numerical computations of heat transfer in helical pipes
eliminate the blood flow. The coronary arteries surrounding \yere reported in a number of publications [12—16]. Cheng
the heart are curved and at least segments of them can beng Kuznetsov [17] studied heat transfer in a fully-developed
modeled as helical. laminar flow of a non-Newtonian fluid in a helical pipe with
Flow in helical pipes is also a subject of intensive inves- 5 constant wall heat flux: the effects of the Dean and Ger-
tigation. Of primary interest is the secondary flow caused 1300 numbers with a fixed Reynolds number on the hydro-
by the centrifugal force in a helical pipe. Numerical stud- gynamics and heat transfer in non-Newtonian fluid flow in
helical pipes were investigated. Nield and Kuznetsov [18]
"* Corresponding author. presented a perturbation analysis and obtained an analyti-
E-mail address: avkuznet@eos.ncsu.edu (A.V. Kuznetsov). cal expression for the Nusselt number in a helical pipe filled
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Nomenclature
piperadius............. i

Forchheimer coefficient

Darcy numberk /a?

Dean numbers1/2Re

Germano numbet Re

dimensionless scale factor

-, hs, hy dimensional scale factors

thermal conductivity

permeability

Nusselt numbers

”
qw

(Tw—Tp)
dimensionless radial coordinatea
radial coordinate
residual vector
Reynolds numbep Ua/u
dimensionless axial coordinat€/a
axial coordinate
pitch
dimensionless pressur,/ pU?2
pressure
Prandtl numberg , 1/ kp,

dimensionless temperature, defined in Eq. (10)
temperature
mean temperature, defined in Eq. (10)
wall temperature

T ™ =
[¢]

NN T me S

S

S

U mean velocity, defined in Eq. (10)...... snt

Y velocity VeCtor . ........oo.vvviienn... Bl

us, ur, g dimensionless velocity components,
us/U,ur /U, ug/U

ils, iy, lg velocity components................ gt

Greek symbols

£ dimensionless curvaturegq

0 angle, defined in Fig. 1(b)

K CUNVALUIE . ..ot e e e ~h

A the ratio of torsion to curvature,/«

m effective dynamic viscosity of a porous
medium................ooo...l kygt.st

v effective kinematic viscosity of a porous
Medium ......ovveiei e, 1

& angle, defined in Eq. (11)

of fluid density . ..........cooveviin... kp—3

T 10612 Th

) porosity

¢ angle, defined in Fig. 1(b)

Subscripts

s axial direction

r radial direction

0 circumferential direction

with a porous medium for the case when the flow in a pipe
is described by the Darcy law.

In the previous paper, Cheng and Kuznetsov [19] inves-
tigated laminar flow in a helical pipe filled with a porous
medium utilizing the Brinkman—Forchheimer-extended Dar-
cy equation with inertia terms. The purpose of this paper
is to perform numerical simulations of heat transfer for a
fully developed laminar flow of a Newtonian fluid in a he-
lical pipe filled with a fluid saturated porous medium sub-

direction,r for the radial direction, and for the circumfer-
ential direction (Fig. 1(b)). The continuity and momentum
equations in the vector form are

V.-U=0 2
and

Pra.wyg=—vB 4 Fvzg_ Py CFP1 g

gDz(v ViV = VP—i-(pV e X172 V|V 3)

jected to a constant wall heat flux. An orthogonal helical wherek is the permeability of the porous medium (which

coordinate SyStem is utilized. The effects of the Darcy num- is assumed to be isotropic with a uniform porositg); is

ber, the FOl’Chheime.l‘ Coef_ﬁCient, the Dean number, and thethe Forchheimer coefficient (Wh|Ch, for a given geometry of

Germano number with a fixed Reynolds number on the hy- 3 porous matrix, is a dimensionless form-drag constant [1]),

drodynamics and heat transfer in helical pipes are investi- 3ndy is the porosity.

gated. Eqg. (3) is a full momentum equation for the steady flow

in porous media that accounts for the Brinkman and Forch-

heimer extensions of the Darcy law as well as for the flow

inertia [1].

_ _ _ . . The energy equation (the effect of thermal dispersion is
A helical pipe (Fig. 1(a)) is characterized by two parame- npeglected) is given by

ters, the curvatureg, and the torsions, which are defined

as, respectively @
R p

TRy p2 TRy p2 @) (5)

An orthogonal helical coordinate system introduced by Ger- wherek,, is the effective thermal conductivity of porous
mano [3,4] is utilized with a helical coordinagdor the axial medium and the subscriptg™ and ‘s’ refer to ‘fluid’ and

2. Governing equations

(pcy) E:V.[kmvf]
prt

Kk kmz(pkf+(l_§0)ks
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A-A Section
(b)

Fig. 1. (a) Schematic diagram of a helical pipe. (b) The orthogonal helical
coordinate system.

‘solid’, respectively. Eg. (5) is a commonly used approxima-
tion for porous media [1]. In the orthogonal helical coordi-
nate system, the scale factors are given by

hy = 1+ k7 SiN@ + @), hy=1, hg =F (6)

The dimensionless governing equations for the flow in a
porous medium written in the orthogonal helical coordinate

system are the continuity equation

d(rus) " d(rhsur) + d(hsup) _

0

as ar 20
the momentum equations
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(a) (b) (©)

Fig. 2. Contour lines of the axial velocity (top), vector plots of the secondary flow (middle) and contour lines of the dimensionless temperatmje (bott
atRe=100,Cp = 0.55, 9 = 0.95,c = 0.1, » = 0.1, Dn = 316, Gn = 1.0 for different values of the Darcy number: @p = 10~2; (b) Da=5 x 10~2;
(c)ba=10"1,

and the energy equation P= P e =kKa A= T
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Fig. 3. Profile plots of the dimensionless axial velocity and dimensionless temperature in the horizontal and vertical cut view of thBepip&Qd,
Cp=055,90=095¢=0.1,A=0.1,Dn= 316, Gn = 1.0 for different values of the Darcy number: @a= 10"2; (b) Da=5 x 10~2; (c) Da=10"1.

whereaq is the radius of the pipe and is the mean velocity — _i (3P 8,\3_13)
defined in Eq. (10). hs \ s 0
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(a) (b) (©)

Fig. 4. Contour lines of the axial velocity (top), vector plots of the secondary flow (middle), and contour lines of the dimensionless tempetatuyatbot
Re=100,Da=10"2, ¢ =0.95,6 =0.1,2 =0.1,Dn= 316, Gn = 1.0 for different values of the Forchheimer coefficient: (&) = 0.0; (b) Cr = 0.25; (c)
Cr =0.50.
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Fig. 5. Profile plots of the dimensionless axial velocity and dimensionless temperature in the horizontal and vertical cut view of thRepip&Qd,
Da=10"2,¢ =095, =0.1,. =0.1,Dn= 316, Gn = 1.0 for different values of the Forchheimer coefficient:(g) = 0.0; (b) Cr = 0.25; (c)Cr = 0.50.

_ s L((S)ﬁi[L g] ber, which is needed to start the iterations, is estimated

RePr = RePr 08 L hs 3§ as follows. The flow is driven by a constant pressure gra-
9 N aT 9 [hsdT 14 dient dP/ds that has to balance the fluid friction in a

+ ar | o + | r 0¢ (14) porous medium, which implies that approximately (neglect-

ing the Forchheimer resistance) the following equation is
satisfied:
3. Computational procedure

dp 1
i 15
A control volume-based finite difference method is uti- ( ds ) DaRe (15)

lized on an evenly spaced mesh in both radial and circum-
ferential directions. The convection—diffusion terms are dis- This is used to evaluate only the initial valueRé. During
cretized with the power-law scheme (Patankar [20]) and the the iteration processe is evaluated according to Eq. (10)
other terms are approximated by central differences. The utilizing the value of the mean velocity from the previous
SIMPLE algorithm (Patankar [20]) is adopted on a staggered iteration.
grid arrangement to solve the governing equations. A constant wall heat flux is assumed as the boundary con-
A no-slip boundary condition is assumed at the walls dition for the energy equation. Since the effective dynamic
of the helical pipe. To solve the numerical singularity at Viscosity of the porous medium is temperature-independent,
the pipe axis(r = 0), boundary values are needed for flow the energy equation is solved after the velocity profile has
quantities, which are either located directly at the pipe axis been obtained. The effects of different parameters for the
or at the opposite sides of the pipe axis (Huttl [7]; Cheng same values of the Reynolds number on the hydrodynamics
and Kuznetsov [11]). An initial value of the Reynolds nhum- and heat transfer in a helical pipe are investigated.
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(@) (b)

Fig. 6. Contour lines of the axial velocity (left) and vector plots of the secondary flow (rigikg at100,Da = 1072 Cr =055,¢9=0.95,Gn=1.0 for
different values of the Dean number: (@)= 0.1, » = 0.1, Dn= 316; (b) e = 0.2, A = 0.05, Dn = 44.7; (c) ¢ = 0.5, . = 0.02,Dn = 70.7; (d) ¢ = 0.8,
A =0.0125,Dn = 894.

Fig. 7. Contour lines of the dimensionless temperaturieat 100, Da = 1072, Cr =0.55, ¢ =0.95, Gn = 1.0 for different values of the Dean number:
(@ ¢=0.1,.=0.1,Dn=316; (b)e =0.2, A, =0.05,Dn=44.7; (c) ¢ = 0.5, =0.02,Dn=70.7; (d) ¢ = 0.8, . = 0.05,Dn = 89.4.
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Fig. 8. Profile plot of the axial velocity and the dimensionless temperature in the horizontal and vertical cut view of theReipe 1410, Da = 102,
Cr =0.55, ¢ =0.95, Gn = 1.0 for different values of the Dean number: @} 0.1, » = 0.1, Dn=316; (b) ¢ = 0.2, . = 0.05,Dn = 44.7; (c) ¢ = 0.5,
A=0.02,Dn=70.7; (d)¢ = 0.8, A =0.0125,Dn = 89.4.

4. Resultsand discussion However, the dimensionless temperature decreases with the
Darcy number, as shown in Fig. 2, and the Nusselt num-
A constant Reynolds number of 100 is assumed for all ber becomes smaller, as shown in Table 1. The displacement
cases to compare the effects of the Darcy number, the Forch-0f the maximum value of the axial velocity to the wall is
heimer coefficient, the Dean number, and the Germano num-apparent and can be explained by the effect of the centrifu-
ber. Values of the Nusselt number for different cases are gal force in a helical pipe, but this does not happen for the
listed in Table 1 to compare the heat transfer efficiency for dimensionless temperature, which remains parabolic for all
different parameter values. computed values of the Darcy number. These trends can also
Figs. 2 and 3 show the effect of the Darcy number on be observed from the profile plots of the dimensionless ax-
the flow and heat transfer in a helical pipe. Fig. 2 depicts ial velocity and temperature in the horizontal and vertical cut
the axial velocity contours, velocity vector plot of the sec- views of the cross section of the pipe (Fig. 3).
ondary flow and the dimensionless temperature contours for The effect of the Forchheimer coefficier@,, on the
different Darcy numbers. This figure shows that with the fluid flow and heat transfer in a helical pipe filled with a
increase of the Darcy number, the maximum of the axial ve- porous medium is shown in Figs. 4 and 5. The contour
locity increases and the secondary flow becomes strongerlines of the axial velocity show that the value of the max-
This is explained by a larger filtration velocity that can be imum axial velocity decreases whefy is increased and
attributed to a larger permeability for larger Darcy numbers. the profile plots of the axial velocity show that increas-
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Contour lines of the stream function

(a) (b) ()

Fig. 9. Contour lines of the axial velocity, the dimensionless temperature and the stream fun&oa 200, Da= 102, Cp = 0.55, ¢ = 0.95,5 = 0.1,
Dn = 31.6 for different values of the Germano number: Xax 0.1, Gn = 1.0; (b) » = 0.5, Gh =5.0; (c) A = 1.0, Gn = 10.0.

Table 1

Nusselt number for different parameters

Da Cr £ A Dn Gn Nu
0.01 0.55 0.10 ao 31.60 100 2110
0.05 0.55 0.10 ao 31.60 100 1240
0.10 0.55 0.10 ao 31.60 100 1019
0.01 0.00 0.10 ao 31.60 100 6.34
0.01 0.25 0.10 ao 31.60 100 1534
0.01 0.50 0.10 ao 31.60 100 2030
0.01 0.55 0.10 ao 31.60 100 2113
0.01 0.55 0.20 o5 44.70 100 2088
0.01 0.55 0.50 m2 70.70 100 1908
0.01 0.55 0.80 125 89.40 00 1521
0.01 0.55 0.10 ao 31.60 100 2113
0.01 0.55 0.10 50 31.60 500 2113
0.01 0.55 0.10 olo} 31.60 100 2113

ing Cr results in the displacement of the maximum axial medium), as shown in the vector plots of the secondary flow.

velocity towards the wall. The secondary flow is also re- The displacement of the maximum value of the dimension-

duced for larger Forchheimer coefficients (which physically less temperature from the center to the wall becomes smaller
corresponds to larger resistance to the flow by the porouswith the increase ofCr, however, the value of the maxi-
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mum increases, opposite to the axial velocity. The Nusselt dimensionless temperature and the Nusselt number. When
number also increases, as shown in Table 1. Wignin- Da is fixed and the Forchheimer coefficier®r, is in-
creases from zero (this assumption means that the form dragcreased, the axial velocity decreases and the secondary flow
due to the solid obstacles in the porous medium is totally becomes weaker, however, the values of the maximum di-
ignored) to 0.25, the change is much larger than when it mensionless temperature and the Nusselt number increase.
increases from 0.25 to 0.5, for both the velocity and the tem- The change is especially apparent wh@&n changes from
perature. zero to a non-zero value. For the same porous medium (i.e.,
The Dean number is a parameter used to characterize thewhen Da and Cr are fixed), when the Dean number in-
magnitude and the shape of the secondary flow. The effectcreases, the maximum values of the dimensionless axial ve-
of the Dean number on the flow and heat transfer is investi- locity and the dimensionless temperature increase and the
gated in Figs. 6-8. Fig. 6 shows that wHenincreases, the ~ secondary flow become stronger. The Nusselt number in-
contour lines corresponding to large values of the axial ve- creases with the Dean number. The increase of the Ger-
locity are displaced to the outer wall due to the centrifugal mano number does not have any significant effect on the
force and the value of the maximum axial velocity increases. axial velocity and heat transfer but strengthens the secondary
The secondary flow also becomes stronger. Fig. 7 shows theflow.
contour lines of the dimensionless temperature for the cor-
responding Dean number. The maximum of the temperature
is also displaced to the outer wall with the increase of the Acknowledgements
Dean number. The profile plots of the axial velocity and )
temperature in Fig. 8 show that the trends are similar ex- 1he authors gratefully acknowledge the support of this
cept that the profile of the axial velocity is closer to that of a WOrk by a USDA grant. Helpful discussions with Prof. K.P.
slug flow while the profile of the dimensionless temperature Sandeep are greatly appreciated. The authors are indebted to
looks more as a deformed parabolic profile. Table 1 shows the reviewers for their comments.
that the Nusselt number decreases when the Dean number is
increased. It can be concluded that the Dean number has sig-
nificant effect on the axial velocity, secondary flow, and heat References

transfer. . . [1] D.A. Nield, A. Bejan, Convection in Porous Media, second ed.,
When the Darcy number, the Forchheimer coefficient, Springer, New York, 1999.

and the Dean number are fixed, the distributions of the ax- [2] W.R. Dean, Note on the motion of fluid in a curved pipe, Philos. Mag-
ial velocity and temperature at the cross-section of a helical  azine 4 (1927) 208-223.

: o v [3] M. Germano, On the effect of torsion on a helical pipe flow, J. Fluid
pipe do not show any significant sensitivity to the Germano Mech. 125 (1982) 1.8,

number’.Wh'Ch describes the effect of torsion ona flowina 4] M. Germano, The Dean equations extended to a helical pipe flow,
helical pipe (Fig. 9). The Nusselt number remains the same,  J. Fluid Mech. 203 (1989) 289-305.

as seen from Table 1. However, the secondary flow does [5] S. Liu, J.H. Masliyah, Axially invariant laminar flow in helical pipes
change, as seen from the contour lines of the stream func- __ With afinite pitch, J. Fluid Mech. 251 (1993) 315-353.

. . S [6] S. Liu, J.H. Masliyah, Developing convective heat transfer in helical
tion, which shows that the shape of the swirl is different for pipes with finite pitch, Internat. J. Heat Fluid Flow 15 (1994) 66-74.

different values of the Germano number. It seems that the [7] T.J. Hutt, Navier—Stokes solutions of laminar flows based on orthog-

Germano number only affects the secondary flow but not the onal helical coordinates, Numer. Methods Laminar Turbulent Flow 10

axial velocity and heat transfer. (1997) 191-202. , ,

[8] T.J. Huttl, Influence of curvature and torsion on turbulent flow in
curved and helically coiled pipes, Internat. J. Heat Fluid Flow 21
(2000) 345-353.

5. Conclusions [9] J.G. Pharoah, S. Litster, N. Djilali, Mass transfer enhancement in
membrane separation—rotating vs. helical modules, in: CFD 2003,
Vancouver, May 2003, pp. 28-30.

[10] K.P. Sandeep, C.A. Zuritz, V.M. Puri, Modeling non-Newtonian two-
phase flow in conventional and helical-holding tubes, Internat. J. Food

This paper studies the laminar flow and heat transfer in
a helical pipe filled with a fluid saturated porous medium

for a constant wall heat flux. A full momentum equation Sci. Technol. 35 (2000) 511-522.
that accounts for the Brinkman and Forchheimer extensions[11] L. Cheng, A.V. Kuznetsov, Investigation of a laminar flow of a non-
of the Darcy law and the flow inertia is utilized and de- Newtonian fluid in a helical pipe, Internat. J. Appl. Mech. Engrg. 10

; ; ; ; 3 (2005) 21-37.
rived in an Orth090nal helical coordinate system. The ef [12] M. Sankariah, Y.V.N. Rao, Analysis of steady laminar flow of an in-

fects of the parameters characterizing the porous medium, compressible Newtonian fluid through curved pipes of small curvature,

the Darcy numbeDa, and the Forchheimer coefficieidr, ASME Paper No. 72-WA/FE-19, 1972.

and the parameters characterizing the helical pipe flow, the[13] S.V. Patankar, V.S. Pratap, D.B. Spalding, Prediction of laminar flow
Dean numberpn, and the Germano numbegn, are in- and heat transfer in helically coiled pipes, J. Fluid Mech. 62 (1974)
vestigated. Increasing the Darcy number results in a larger 539-551.

. N . . [14] G. Yang, Z.F. Dong, M.A. Ebadian, Laminar forced convection in a
maximum value of the axial filtration velocity and a stronger helicoidal pipe with finite pitch, Internat. J. Heat Mass Transfer 38

secondary flow but a smaller value of the maximum of the (1995) 853-862.



798 L. Cheng, A.V. Kuznetsov / International Journal of Thermal Sciences 44 (2005) 787798

[15] C.X. Lin, P. Zhang, M.A. Ebadian, Laminar forced convection in the [18] D.A. Nield, A.V. Kuznetsov, Forced convection in a helical pipe filled

entrance region of helical pipes, Internat. J. Heat Mass Transfer 40 with a saturated porous medium, Internat. J. Heat Mass Transfer 47
(1997) 3293-3304. (2004) 5175-5180.

[16] B. Zheng, C.X. Lin, M.A. Ebadian, Combined laminar forced con- [19] L. Cheng, A.V. Kuznetsov, Investigation of laminar flow in a helical
vection and thermal radiation in a helical pipe, Internat. J. Heat Mass pipe filled with a fluid saturated porous medium, European J. Mech. B
Transfer 43 (2000) 1067-1078. Fluids 24 (2005) 338-352.

[17] L. Cheng, A.V. Kuznetsov, Heat transfer in a laminar flow of a non-  [20] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill,
Newtonian fluid in a helical pipe, Internat. J. Transport Phenomena 6 New York, 1980.

(2004) 293-306.



